Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
medRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38586006

RESUMO

Areas of dense population congregation are prone to experience respiratory virus outbreaks. We monitored wastewater and clinic patients for the presence of respiratory viruses on a large, public university campus. Campus sewer systems were monitored in 16 locations for the presence of viruses using next generation sequencing over 22 weeks in 2023. During this period, we detected a surge in human adenovirus (HAdV) levels in wastewater. Hence, we initiated clinical surveillance at an on-campus clinic from patients presenting with acute respiratory infection. From whole genome sequencing of 123 throat and/or nasal swabs collected, we identified an outbreak of HAdV, specifically of HAdV-E4 and HAdV-B7 genotypes overlapping in time. The temporal dynamics and proportions of HAdV genotypes found in wastewater were corroborated in clinical infections. We tracked specific single nucleotide polymorphisms (SNPs) found in clinical virus sequences and showed that they arose in wastewater signals concordant with the time of clinical presentation, linking community transmission of HAdV to the outbreak. This study demonstrates how wastewater-based epidemiology can be integrated with surveillance at ambulatory healthcare settings to monitor areas prone to respiratory virus outbreaks and provide public health guidance.

2.
Sci Total Environ ; 928: 172260, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583622

RESUMO

Novel means are needed to identify individuals and subpopulations susceptible to and afflicted by neurodegenerative diseases (NDDs). This study aimed to utilize geographic distribution of heavy metal sources and sinks to investigate a potential human health risk of developing NDDs. Known or hypothesized environmental factors driving disease prevalence of Alzheimer's Disease (AD), Parkinson's Disease (PD), and amyotrophic lateral sclerosis (ALS) are heavy metals, including arsenic (As), cadmium (Cd), manganese (Mn) and mercury (Hg). Lead (Pb) has been associated with AD and ALS. Analyzable mediums of human exposure to heavy metals (i.e., toxic metals and metalloids), or proxies thereof, include infant blood, topsoil, sewage sludge, and well water. U.S. concentrations of heavy metals in topsoil, sewage sludge, well water, and infant blood were mapped and compared to prevalence rates of major NDDs. Data from federal and state agencies (i.e., CDC, EPA, and the US Geological Survey) on heavy metal concentrations, age distribution, and NDD prevalence rates were geographically represented and statistically analyzed to quantify possible correlations. Aside from an expected significant association between NDD prevalence and age (p < 0.0001), we found significant associations between the prevalence of the sum of three major NDDs with: Pb in topsoil (p = 0.0433); Cd (p < 0.0001) and Pb (p < 0.0001) in sewage sludge; Pb in infant blood (p < 0.0001). Concentrations in sewage sludge of Cd and Pb were significantly correlated with NDD prevalence rates with an odds ratio of 2.91 (2.04, 4.225 95%CI) and 4.084 (3.14, 5.312 95%CI), respectively. The presence of toxic metals in the U.S. environment in multiple matrices, including sewage sludge, was found to be significantly associated with NDD prevalence. This is the first use of sewage sludge as an environmental proxy matrix to infer risk of developing NDDs.

3.
J Hazard Mater ; 469: 133955, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457976

RESUMO

The complexity around the dynamic markets for new psychoactive substances (NPS) forces researchers to develop and apply innovative analytical strategies to detect and identify them in influent urban wastewater. In this work a comprehensive suspect screening workflow following liquid chromatography - high resolution mass spectrometry analysis was established utilising the open-source InSpectra data processing platform and the HighResNPS library. In total, 278 urban influent wastewater samples from 47 sites in 16 countries were collected to investigate the presence of NPS and other drugs of abuse. A total of 50 compounds were detected in samples from at least one site. Most compounds found were prescription drugs such as gabapentin (detection frequency 79%), codeine (40%) and pregabalin (15%). However, cocaine was the most found illicit drug (83%), in all countries where samples were collected apart from the Republic of Korea and China. Eight NPS were also identified with this protocol: 3-methylmethcathinone 11%), eutylone (6%), etizolam (2%), 3-chloromethcathinone (4%), mitragynine (6%), phenibut (2%), 25I-NBOH (2%) and trimethoxyamphetamine (2%). The latter three have not previously been reported in municipal wastewater samples. The workflow employed allowed the prioritisation of features to be further investigated, reducing processing time and gaining in confidence in their identification.


Assuntos
Drogas Ilícitas , Poluentes Químicos da Água , Águas Residuárias , Fluxo de Trabalho , Psicotrópicos , China , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 920: 170781, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38360322

RESUMO

Synthetic opioids, particularly the nitazene analogues class, have become a public health concern due to their high potency. Wastewater-based epidemiology can detect community use of these compounds. The objective of this work was to detect nitazene analogues in wastewater from samples collected from eight sites in the United States. Influent wastewater samples were collected from eight sites in seven states (Arizona, Oregon, New Mexico, Illinois, New Jersey, Washington and Georgia) in the United States. Samples were collected from each site on three days between 27 December 2022 and 4 January 2023, acidified on collection, stored frozen and shipped to Arizona State University (Tempe, AZ) for sample processing. Samples were then shipped to The University of Queensland (Brisbane, Australia) for sample analysis. Protonitazene was found in samples collected from two sites in Washington and Illinois. The concentration was estimated up to 0.5 ng/L, with estimated excreted mass loads up to 0.3 mg/day/1000 people. This work has shown that it is possible to detect nitazene analogues in wastewater using a combination of sample pre-concentration and sensitive instrumentation, thereby further expanding the utility of wastewater-based epidemiology.


Assuntos
Drogas Ilícitas , Poluentes Químicos da Água , Humanos , Drogas Ilícitas/análise , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Austrália , Arizona , Poluentes Químicos da Água/análise
5.
Infect Genet Evol ; 118: 105550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199505

RESUMO

We describe four complete coding sequence (cCDS) of canine picornavirus from wastewater in Arizona, USA detected by coupling cCDS single-contig (∼7.5 kb) reverse-transcriptase polymerase chain reaction (RT-PCR) and low-cost long-read high-throughput sequencing. For viruses of medical/veterinary importance, this workflow expands possibilities of wastewater based genomic epidemiology for exploring virus evolutionary dynamics especially in low-resource settings.


Assuntos
Infecções por Picornaviridae , Picornaviridae , Animais , Cães , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Águas Residuárias , Picornaviridae/genética , Filogenia
6.
Appl Environ Microbiol ; 90(1): e0142823, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38099657

RESUMO

Wastewater-based epidemiology (WBE) expanded rapidly in response to the COVID-19 pandemic. As the public health emergency has ended, researchers and practitioners are looking to shift the focus of existing wastewater surveillance programs to other targets, including bacteria. Bacterial targets may pose some unique challenges for WBE applications. To explore the current state of the field, the National Science Foundation-funded Research Coordination Network (RCN) on Wastewater Based Epidemiology for SARS-CoV-2 and Emerging Public Health Threats held a workshop in April 2023 to discuss the challenges and needs for wastewater bacterial surveillance. The targets and methods used in existing programs were diverse, with twelve different targets and nine different methods listed. Discussions during the workshop highlighted the challenges in adapting existing programs and identified research gaps in four key areas: choosing new targets, relating bacterial wastewater data to human disease incidence and prevalence, developing methods, and normalizing results. To help with these challenges and research gaps, the authors identified steps the larger community can take to improve bacteria wastewater surveillance. This includes developing data reporting standards and method optimization and validation for bacterial programs. Additionally, more work is needed to understand shedding patterns for potential bacterial targets to better relate wastewater data to human infections. Wastewater surveillance for bacteria can help provide insight into the underlying prevalence in communities, but much work is needed to establish these methods.IMPORTANCEWastewater surveillance was a useful tool to elucidate the burden and spread of SARS-CoV-2 during the pandemic. Public health officials and researchers are interested in expanding these surveillance programs to include bacterial targets, but many questions remain. The NSF-funded Research Coordination Network for Wastewater Surveillance of SARS-CoV-2 and Emerging Public Health Threats held a workshop to identify barriers and research gaps to implementing bacterial wastewater surveillance programs.


Assuntos
Objetivos , Pandemias , Humanos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Bactérias , SARS-CoV-2
7.
Sci Total Environ ; 903: 166230, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574063

RESUMO

A recent outbreak of the mpox virus (MPXV) occurred in non-endemic regions of the world beginning in May 2022. Pathogen surveillance systems faced pressure to quickly establish response protocols, offering an opportunity to employ wastewater-based epidemiology (WBE) for population-level monitoring. The pilot study reported herein aimed to: (i) develop a reliable protocol for MPXV DNA detection in wastewater which would reduce false negative reporting, (ii) test this protocol on wastewater from various regions across the United States, and (iii) conduct a state of the science review of the current literature reporting on experimental methods for MPXV detection using WBE. Twenty-four-hour composite samples of untreated municipal wastewater were collected from the states of New Jersey, Georgia, Illinois, Texas, Arizona, and Washington beginning July 3rd, 2022 through October 16th, 2022 (n = 60). Samples underwent vacuum filtration, DNA extraction from captured solids, MPXV DNA pre-amplification, and qPCR analysis. Of the 60 samples analyzed, a total of eight (13%) tested positive for MPXV in the states of Washington, Texas, New Jersey, and Illinois. The presence of clade IIb MPXV DNA in these samples was confirmed via Sanger sequencing and integration of pre-amplification prior to qPCR decreased the rate of false negative detections by 87% as compared to qPCR analysis alone. Wastewater-derived detections of MPXV were compared to clinical datasets, with 50% of detections occurring as clinical cases were increasing/peaking and 50% occurring as clinical cases waned. Results from the literature review (n = 9 studies) revealed successful strategies for the detection of MPXV DNA in wastewater, however also emphasized a need for further method optimization and standardization. Overall, this work highlights the use of pre-amplification prior to qPCR detection as a means to capture the presence of MPXV DNA in community wastewater and offers guidance for monitoring low-titer pathogens via WBE.

8.
Water Res X ; 19: 100179, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143710

RESUMO

The proliferation of new psychoactive substances (NPS) over recent years has made their surveillance complex. The analysis of raw municipal influent wastewater can allow a broader insight into community consumption patterns of NPS. This study examines data from an international wastewater surveillance program that collected and analysed influent wastewater samples from up to 47 sites in 16 countries between 2019 and 2022. Influent wastewater samples were collected over the New Year period and analysed using validated liquid chromatography - mass spectrometry methods. Over the three years, a total of 18 NPS were found in at least one site. Synthetic cathinones were the most found class followed by phenethylamines and designer benzodiazepines. Furthermore, two ketamine analogues, one plant based NPS (mitragynine) and methiopropamine were also quantified across the three years. This work demonstrates that NPS are used across different continents and countries with the use of some more evident in particular regions. For example, mitragynine has highest mass loads in sites in the United States, while eutylone and 3-methylmethcathinone increased considerably in New Zealand and in several European countries, respectively. Moreover, 2F-deschloroketamine, an analogue of ketamine, has emerged more recently and could be quantified in several sites, including one in China, where it is considered as one of the drugs of most concern. Finally, some NPS were detected in specific regions during the initial sampling campaigns and spread to additional sites by the third campaign. Hence, wastewater surveillance can provide an insight into temporal and spatial trends of NPS use.

9.
Environ Sci Technol ; 57(20): 7645-7665, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37157132

RESUMO

Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This work presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs' role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the US Environmental Protection Agency's current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects.


Assuntos
COVID-19 , Desinfetantes , Humanos , Compostos de Amônio Quaternário/química , Pandemias , Antibacterianos
10.
Sci Total Environ ; 892: 164425, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257618

RESUMO

Although different quantification methods are extensively used in environmental chemistry, the impact of the choice of method on the quality and range of analytical results is understudied. This two-part study consists of (a) in-lab evaluation and (b) a traditional meta-analysis (n = 66) of commonly used quantification methods): (i) external calibration; (ii) isotope dilution method with authentic target analogs; (iii) isotope dilution with non-target standards; and (iv) standard addition prior to LC-MS/MS in liquid chromatography tandem mass spectrometry (LC-MS/MS) by example of antibiotics in sewage sludge from across the U.S. Using method (i) as the benchmark quantification method for the antibiotic erythromycin in biosolids, other quantification methods resulted in an overestimation (110-450 %) or an underestimation (10-60 %). Using the method (iv) as the benchmark for other compounds resulted in an overestimation (101-14,700 %) or an underestimation (6-98 %). Matrix effects were also observed and were dependent on the matrix and analyte type. For example, in the case of erythromycin, all sample matrices showed signal suppression. This study showed that in the absence of isotopically labeled analogs, the most accurate alternate quantification method may need to be experimentally determined depending on the analyte. Analysis of published literature on pharmaceuticals in sewage sludge indicated that isotope dilution with authentic target analog is most commonly used, followed by non-target isotope standards, standard addition, and finally external calibration.


Assuntos
Esgotos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Isótopos , Calibragem
11.
Microbiol Resour Announc ; 12(5): e0006923, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37098909

RESUMO

We describe the genome (4,696 nucleotides [GC content, 56%; coverage, 3,641×) of MAZ-Nov-2020, a microvirus identified from municipal wastewater in Maricopa County, Arizona, USA, in November 2020. The MAZ-Nov-2020 genome encodes major capsid protein, endolysin, replication initiator protein, and two hypothetical proteins, one of which was predicted to likely be a membrane-associated multiheme cytochrome c.

12.
Nat Food ; 4(3): 257-266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118274

RESUMO

Population-level nutritional assessments often rely on self-reported data, which increases the risk of recall bias. Here, we demonstrate that wastewater-based epidemiology can be used for near real-time population dietary assessments. Neighbourhood-level, untreated wastewater samples were collected monthly from within an urban population in the south-western United States from August 2017 to July 2019. Using liquid chromatography-tandem mass spectrometry, we identify recurring seasonal dynamics in phytoestrogen consumption, including dietary changes linked to the winter holiday season. Using 16S ribosomal RNA gene amplicon sequencing, we demonstrated the feasibility of detecting sewage-derived human gut bacterial taxa involved in phytoestrogen metabolism, including Bifidobacterium, Blautia and Romboutsia. Combined metabolomic and genomic wastewater analysis can inform nutritional assessments at population scale, indicating wastewater-based epidemiology as a promising tool for actionable and cost-effective data collection to support public health nutrition.


Assuntos
Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Estados Unidos , Humanos , Avaliação Nutricional , Multiômica , Fitoestrógenos , Saúde Pública , Dieta
13.
Sci Total Environ ; 877: 162862, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933724

RESUMO

Wastewater-based epidemiology (WBE) is a non-invasive and cost-effective approach for monitoring the spread of a pathogen within a community. WBE has been adopted as one of the methods to monitor the spread and population dynamics of the SARS-CoV-2 virus, but significant challenges remain in the bioinformatic analysis of WBE-derived data. Here, we have developed a new distance metric, CoVdist, and an associated analysis tool that facilitates the application of ordination analysis to WBE data and the identification of viral population changes based on nucleotide variants. We applied these new approaches to a large-scale dataset from 18 cities in nine states of the USA using wastewater collected from July 2021 to June 2022. We found that the trends in the shift between the Delta and Omicron SARS-CoV-2 lineages were largely consistent with what was seen in clinical data, but that wastewater analysis offered the added benefit of revealing significant differences in viral population dynamics at the state, city, and even neighborhood scales. We also were able to observe the early spread of variants of concern and the presence of recombinant lineages during the transitions between variants, both of which are challenging to analyze based on clinically-derived viral genomes. The methods outlined here will be beneficial for future applications of WBE to monitor SARS-CoV-2, particularly as clinical monitoring becomes less prevalent. Additionally, these approaches are generalizable, allowing them to be applied for the monitoring and analysis of future viral outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estados Unidos/epidemiologia , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
14.
mBio ; 14(1): e0310122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36622143

RESUMO

The adaptive evolution of SARS-CoV-2 variants is driven by selection for increased viral fitness in transmissibility and immune evasion. Understanding the dynamics of how an emergent variant sweeps across populations can better inform public health response preparedness for future variants. Here, we investigated the state-level genomic epidemiology of SARS-CoV-2 through baseline genomic sequencing surveillance of 27,071 public testing specimens and 1,125 hospital inpatient specimens diagnosed between November 1, 2021, and January 31, 2022, in Arizona. We found that the Omicron variant rapidly displaced Delta variant in December 2021, leading to an "Omicron surge" of COVID-19 cases in early 2022. Wastewater sequencing surveillance of 370 samples supported the synchronous sweep of Omicron in the community. Hospital inpatient COVID-19 cases of Omicron variant presented to three major hospitals 10.51 days after its detection from public clinical testing. Nonsynonymous mutations in nsp3, nsp12, and nsp13 genes were significantly associated with Omicron hospital cases compared to community cases. To model SARS-CoV-2 transmissions across the state population, we developed a scalable sequence network methodology and showed that the Omicron variant spread through intracounty and intercounty transmissions. Finally, we demonstrated that the temporal emergence of Omicron BA.1 to become the dominant variant (17.02 days) was 2.3 times faster than the prior Delta variant (40.70 days) or subsequent Omicron sublineages BA.2 (39.65 days) and BA.5 (35.38 days). Our results demonstrate the uniquely rapid sweep of Omicron BA.1. These findings highlight how integrated public health surveillance can be used to enhance preparedness and response to future variants. IMPORTANCE SARS-CoV-2 continues to evolve new variants throughout the pandemic. However, the temporal dynamics of how SARS-CoV-2 variants emerge to become the dominant circulating variant is not precisely known. Genomic sequencing surveillance offers unique insights into how SARS-CoV-2 spreads in communities and the lead-up to hospital cases during a surge. Specifically, baseline sequencing surveillance through random selection of positive diagnostic specimens provides a representative outlook of the virus lineages circulating in a geographic region. Here, we investigated the emergence of the Omicron variant of concern in Arizona by leveraging baseline genomic sequence surveillance of public clinical testing, hospitals, and community wastewater. We tracked the spread and evolution of the Omicron variant as it first emerged in the general public, and its rapid shift in hospital admissions in the state health system. This study demonstrates the timescale of public health preparedness needed to respond to an antigenic shift in SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Arizona/epidemiologia , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , Hospitais , Teste para COVID-19
15.
Sci Total Environ ; 857(Pt 1): 159377, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36240932

RESUMO

Levels in wastewater of human stress biomarkers, such as cortisone (E), cortisol (F), tetrahydrocortisone (THE), and tetrahydrocortisol (THF) may serve as indicators of population wellbeing and overall health. This study examined the stability of these biosignature compounds in wastewater to inform on their applicability for use in wastewater-based epidemiology (WBE). Wastewater from two undisclosed U.S. municipalities were fortified with the above four biomarkers of stress to a concentration of 10 ppb, and their decay was studied at three temperatures (15, 25, and 35 °C) over 24 h in oxic and anoxic conditions. Samples were analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS) in conjunction with the isotope dilution method for absolute quantitation. Results demonstrated short-term persistence (24 h) of biomarkers at low temperatures (15 °C), and accelerating kinetics of decay that were positively correlated with temperature increases. Among the four biomarkers evaluated, the tetrahydro derivatives were the most long-lived sewage-borne stress biomarkers and these are recommended as prime analytical targets for use in WBE when tracking population stress. Statistical analyses using a non-parametric Wilcoxon test further revealed no significant differences (p > 0.05) between oxic and anoxic decay rates for all stress biomarkers in wastewater from all study locations, regardless of the prevailing temperature regime. This negative finding is worthy of reporting because it suggests the feasibility of straightforward modeling of stress hormone decay, irrespective of whether the sewerage system monitored contains fully filled, pressurized pipes or partially filled gravity flow pipes, whose filling level, and with it its redox conditions, are known to fluctuate over time with water use and storm events.


Assuntos
Espectrometria de Massas em Tandem , Águas Residuárias , Humanos , Biomarcadores , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Tetra-Hidrocortisona , Águas Residuárias/análise
16.
Sci Total Environ ; 857(Pt 2): 159351, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36243065

RESUMO

Z-drugs, benzodiazepines and ketamine are classes of psychotropic drugs prescribed for treating anxiety, sleep disorders and depression with known side effects including an elevated risk of addiction and substance misuse. These drugs have a strong potential for misuse, which has escalated over the years and was hypothesized here to have been exacerbated during the COVID-19 pandemic. Wastewater-based epidemiology (WBE) constitutes a fast, easy, and relatively inexpensive approach to epidemiological surveys for understanding the incidence and frequency of uses of these drugs. In this study, we analyzed wastewater (n = 376) from 50 cities across the United States and Mexico from July to October 2020 to estimate drug use rates during a pandemic event. Both time and flow proportional composite and grab samples of untreated municipal wastewater were analyzed using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry to determine loadings of alprazolam, clonazepam, diazepam, ketamine, lorazepam, nordiazepam, temazepam, zolpidem, and zaleplon in raw wastewater. Simultaneously, prescription data of the aforementioned drugs were extracted from the Medicaid database from 2019 to 2021. Results showed high detection frequencies of ketamine (90 %), lorazepam (87 %), clonazepam (76 %) and temazepam (73 %) across both Mexico and United States and comparatively lower detection frequencies for zaleplon (22 %), zolpidem (9 %), nordiazepam (<1 %), diazepam (<1 %), and alprazolam (<1 %) during the pandemic. Average mass consumption rates, estimated using WBE and reported in units of mg/day/1000 persons, ranged between 62 (temazepam) and 1100 (clonazepam) in the United States. Results obtained from the Medicaid database also showed a significant change (p < 0.05) in the prescription volume between the first quarter of 2019 (before the pandemic) and the first quarter of 2021 (pandemic event) for alprazolam, clonazepam and lorazepam. Study results include the first detections of zaleplon and zolpidem in wastewater from North America.


Assuntos
COVID-19 , Ketamina , Humanos , Estados Unidos/epidemiologia , Benzodiazepinas , Alprazolam/análise , Águas Residuárias/análise , Pandemias , Nordazepam/análise , Zolpidem/análise , Clonazepam/análise , Lorazepam/análise , Espectrometria de Massas em Tandem/métodos , COVID-19/epidemiologia , Temazepam/análise , México/epidemiologia , Diazepam
17.
Sci Total Environ ; 856(Pt 2): 159166, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202364

RESUMO

Monkeypox disease (MPXD), a viral disease caused by the monkeypox virus (MPXV), is an emerging zoonotic disease endemic in some countries of Central and Western Africa but seldom reported outside the affected region. Since May 2022, MPXD has been reported at least in 74 countries globally, prompting the World Health Organization to declare the MPXD outbreak a Public Health Emergency of International Concern. As of July 24, 2022; 92 % (68/74) of the countries with reported MPXD cases had no historical MPXD case reports. From the One Health perspective, the spread of MPXV in the environment poses a risk not only to humans but also to small mammals and may, ultimately, spread to potent novel host populations. Wastewater-based surveillance (WBS) has been extensively utilized to monitor communicable diseases, particularly during the ongoing COVID-19 pandemic. It helped in monitoring infectious disease caseloads as well as specific viral variants circulating in communities. The detection of MPXV DNA in lesion materials (e.g. skin, vesicle fluid, crusts), skin rashes, and various body fluids, including respiratory and nasal secretions, saliva, urine, feces, and semen of infected individuals, supports the possibility of using WBS as an early proxy for the detection of MPXV infections. WBS of MPXV DNA can be used to monitor MPXV activity/trends in sewerage network areas even before detecting laboratory-confirmed clinical cases within a community. However, several factors affect the detection of MPXV in wastewater including, but not limited to, routes and duration time of virus shedding by infected individuals, infection rates in the relevant affected population, environmental persistence, the processes and analytical sensitivity of the used methods. Further research is needed to identify the key factors that impact the detection of MPXV biomarkers in wastewater and improve the utility of WBS of MPXV as an early warning and monitoring tool for safeguarding human health. In this review, we shortly summarize aspects of the MPXV outbreak relevant to wastewater monitoring and discuss the challenges associated with WBS.


Assuntos
COVID-19 , Animais , Humanos , /diagnóstico , Águas Residuárias , Pandemias , COVID-19/epidemiologia , Vírus da Varíola dos Macacos/genética , DNA Viral , Monitoramento Ambiental , Mamíferos
18.
Influenza Other Respir Viruses ; 17(1): e13057, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36168937

RESUMO

We determine the presence and diversity of rhinoviruses in nasopharyngeal swab samples from 248 individuals who presented with influenza-like illness (ILI) at a university clinic in the Southwest United States between October 1, 2020 and March 31, 2021. We identify at least 13 rhinovirus genotypes (A11, A22, A23, A25, A67, A101, B6, B79, C1, C17, C36, and C56, as well a new genotype [AZ88**]) and 16 variants that contributed to the burden of ILI in the community. We also describe the complete capsid protein gene of a member (AZ88**) of an unassigned rhinovirus A genotype.


Assuntos
Infecções por Enterovirus , Infecções por Picornaviridae , Infecções Respiratórias , Viroses , Humanos , Rhinovirus/genética , Infecções Respiratórias/epidemiologia , Universidades , Infecções por Picornaviridae/epidemiologia , Genótipo
19.
Lancet Microbe ; 4(1): e29-e37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493788

RESUMO

BACKGROUND: Before the COVID-19 pandemic, the US opioid epidemic triggered a collaborative municipal and academic effort in Tempe, Arizona, which resulted in the world's first open access dashboard featuring neighbourhood-level trends informed by wastewater-based epidemiology (WBE). This study aimed to showcase how wastewater monitoring, once established and accepted by a community, could readily be adapted to respond to newly emerging public health priorities. METHODS: In this population-based study in Greater Tempe, Arizona, an existing opioid monitoring WBE network was modified to track SARS-CoV-2 transmission through the analysis of 11 contiguous wastewater catchments. Flow-weighted and time-weighted 24 h composite samples of untreated wastewater were collected at each sampling location within the wastewater collection system for 3 days each week (Tuesday, Thursday, and Saturday) from April 1, 2020, to March 31, 2021 (Area 7 and Tempe St Luke's Hospital were added in July, 2020). Reverse transcription quantitative PCR targeting the E gene of SARS-CoV-2 isolated from the wastewater samples was used to determine the number of genome copies in each catchment. Newly detected clinical cases of COVID-19 by zip code within the City of Tempe, Arizona were reported daily by the Arizona Department of Health Services from May 23, 2020. Maricopa County-level new positive cases, COVID-19-related hospitalisations, deaths, and long-term care facility deaths per day are publicly available and were collected from the Maricopa County Epidemic Curve Dashboard. Viral loads of SARS-CoV-2 (genome copies per day) measured in wastewater from each catchment were aggregated at the zip code level and city level and compared with the clinically reported data using root mean square error to investigate early warning capability of WBE. FINDINGS: Between April 1, 2020, and March 31, 2021, 1556 wastewater samples were analysed. Most locations showed two waves in viral levels peaking in June, 2020, and December, 2020-January, 2021. An additional wave of viral load was seen in catchments close to Arizona State University (Areas 6 and 7) at the beginning of the fall (autumn) semester in late August, 2020. Additionally, an early infection hotspot was detected in the Town of Guadalupe, Arizona, starting the week of May 4, 2020, that was successfully mitigated through targeted interventions. A shift in early warning potential of WBE was seen, from a leading (mean of 8·5 days [SD 2·1], June, 2020) to a lagging (-2·0 days [1·4], January, 2021) indicator compared with newly reported clinical cases. INTERPRETATION: Lessons learned from leveraging an existing neighbourhood-level WBE reporting dashboard include: (1) community buy-in is key, (2) public data sharing is effective, and (3) sub-ZIP-code (postal code) data can help to pinpoint populations at risk, track intervention success in real time, and reveal the effect of local clinical testing capacity on WBE's early warning capability. This successful demonstration of transitioning WBE efforts from opioids to COVID-19 encourages an expansion of WBE to tackle newly emerging and re-emerging threats (eg, mpox and polio). FUNDING: National Institutes of Health's RADx-rad initiative, National Science Foundation, Virginia G Piper Charitable Trust, J M Kaplan Fund, and The Flinn Foundation.


Assuntos
COVID-19 , Prioridades em Saúde , Águas Residuárias , Humanos , Acesso à Informação , Analgésicos Opioides , COVID-19/epidemiologia , Pandemias , Projetos de Pesquisa , SARS-CoV-2 , Estados Unidos
20.
Sci Total Environ ; 858(Pt 3): 160103, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370774

RESUMO

Cardiovascular disease (CVD) and cancer are collectively responsible for tens of millions of global deaths each year. These rates are projected to intensify as the COVID-19 pandemic has caused delays in individualized diagnostics, or exacerbated prevalence due to Post Acute Coronavirus (COVID-19) Syndrome. Wastewater-based epidemiology (WBE) has successfully been employed as a useful tool for generating population-level health assessments, and was examined here in this systematic scoping literature review to (i) identify endogenous human biomarkers reported to indicate CVD or cancer in clinical practice, (ii) assess specificity to the indicated diseases, (iii) evaluate the utility for estimating population-level disease prevalence in community wastewater, and (iv) contextualize the obtained information for monitoring CVD and cancer presence via WBE. A total of 48 peer-reviewed papers were critically examined identifying five urinary protein biomarkers: cardiac troponin I (cTnI) (heart attack/heart failure), cystatin C (atherosclerosis), normetanephrine (tumor presence), α-fetoprotein (prostate and liver cancer), and microtubule assisted serine/threonine kinase 4 (MAST4) (breast cancer). Next, urinary excretion information was utilized to predict biomarker concentrations extant in community wastewater, resulting in average healthy concentrations ranging from 0.02 to 1159 ng/L, and disease-indicating thresholds from 0.16 to 3041 ng/L. Finally, estimating prevalence-adjusted wastewater measurements was explored in order to assess community-level CVD and cancer presence utilizing U.S. reported prevalence rates. Results obtained suggest that WBE can serve as a viable tool in support of current methods for CVD and cancer assessment to reduce morbidities and mortalities worldwide.


Assuntos
COVID-19 , Doenças Cardiovasculares , Neoplasias , Humanos , Vigilância Epidemiológica Baseada em Águas Residuárias , Doenças Cardiovasculares/epidemiologia , Pandemias , COVID-19/epidemiologia , Neoplasias/epidemiologia , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...